|  | Number and Place Value | Number: Addition and Subtraction | Statistics | Number: Multiplication and Division | Measurement: Area and Perimeter |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Year 5 <br> Autumn Term | -Read, write, order and compare numbers to 1000,000 and state the value of each digit <br> -Count forwards and backwards in powers of 10 from any given number up to 1000,000-e.g. 3000, 4000... <br> - Interpret negative numbers in context-e.g. temperature <br> -Count forwards and backwards with positive and negative whole numbers including through zero <br> -Round any number up to 1000,000 to the nearest $10,100,1000,10,000$ and 100,000 <br> -Solve number and practical problems all of the above <br> -Read Roman numerals up to 1000 (M) and recognise years written in Roman numerals. | -Add and subtract numbers mentally with increasingly large numbers <br> -Add and subtract whole numbers with more than 4 digits, including using formal column method <br> $\bullet$-Use rounding to check answers to calculations and check levels of accuracy <br> - Solve addition and subtraction multi-step problems in contexts deciding which operations to use and why | - Solve <br> comparison, sum and difference problems using a line graph <br> -Compete, read and interpret information in tables including timetables | - Multiply and divide numbers mentally using known facts <br> - Multiply and divide whole numbers by 10,100 and 1000 <br> -Identify multiples and factors, including finding all factor pairs and common factors of two numbers-e.g. factors of 10 are $1,2,5$ and 10 factors of 20 are $1,2,4,5,10$ and 20 Common factors are $1,2,5$ and 10 <br> -Recognise and use square numbers-e.g. 25 is a square number because it is created by multiplying a number by itself-5 55 <br> -Recognise and use cubed numbers-e.g. a number multiplied by itself three times $-3 \times 3 \times 3=27$ ( 27 is a cubed number) <br> -Use appropriate notation for both squared and cubed numbers <br> - Solve problems involving multiplication and division, including those involving factors, multiples, squared and cubed numbers. Know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers <br> - Establish whether a number up to 100 is prime and recall prime numbers up to 19 e.g. $2,3,5,7,11,13,17,19$ | - Measure and calculate the perimeter of a rectilinear shape in cm and m <br> -Calculate and compare the area of rectangles (including squares) and including using standard units of measure cm 2 and m 2 <br> -Estimate the area of irregular shapes |


|  | Number: Multiplication and Division | Number: Fractions | Number: Decimals and Percentages |
| :---: | :---: | :---: | :---: |
| Year 5 | - Multiply and divide numbers mentally using known facts | -Compare and order fractions whose denominators are multiples of the same number-e.g $3 / 4$, $5 / 8$ and $8 / 12$ | -Read, write, order and compare decimal numbers up to three decimal places |
| Spring | - Multiply numbers up to 4 digits by a one or two-digit numbers using formal | -Identify, name and write equivalent fractions of a given fraction, represented visually including tenths and hundredths. | -Recognise and use thousandths (0.001) and relate them to tenths, hundredths and decimal equivalents |
| Term | written methods, including long multiplication for 2 digits. | - Recognise mixed numbers and improper fractions and convert between them-e.g. 8/6 is $12 / 6$ or $22 / 3$ is $8 / 3$ | - Round decimals with two decimal places (1.23) to the nearest whole number (1) and nearest tenth (1.2) |
|  | - Divide numbers up to 4 digits by a 1-digit number using formal written methods of short division (bus stop) | -Add and subtract fractions with the same denominator and denominators that are multiples of the same number-e.g. $4 / 5+3 / 5=7 / 5$ or $3 / 5+4 / 10=10 / 10$ or 1 whole number <br> - Multiply proper fractions (numerator is smaller than denominator) and mixed numbers by | - Solve problem involving numbers up to three decimal places <br> -Recognise the \% symbol and understand that this means the 'number of parts per 100' |
|  | and interpret remainders in the context of a question | whole numbers supported by equipment and images <br> - Read and write decimal numbers as fractions-e.g. 0.71 is $71 / 100$ | - Relate percentages to fractions with a denominator of 100 and to decimal numbers |
|  | -Solve problems involving addition, subtraction, multiplication and division | -Solve problem involving multiplication and division, including scaling by simple fractions | - Solve problems that involve knowing percentage and decimals equivalents of $1 / 2,1 / 4,1 / 5,2 / 5,4 / 5$ and those fractions with a denominator of 10 or 25 |


|  | Number: Decimals | Geometry: Properties of Shape | Geometry: Position and Direction | Measurement: Converting Units | Measurement: Volume |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Year 5 <br> Summer <br> Term | -Recognise and write decimals equivalents of any number of tenths or hundredths-e.g. 78 hundredths is 0.78 <br> - Find the effect of dividing a one or two-digit number by 10 or 100 , identifying the value of each digit in the answer as ones, tenths and hundredths <br> - Solve simple money and measure problems involving fractions and decimals to two decimal places <br> -Convert between different units of measure-e.g. km to m | -Identify 3D shapes, including cubes and cuboids from 2D representations <br> - Use the properties of rectangles to find missing lengths and angles. <br> - Know the difference between regular and irregular polygons by using an understanding of equal length lines and angles <br> -Know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles <br> -Draw given angles and measure them in degrees <br> -Identify: angles at a point and one whole turn (360 degrees), angles at a point on a straight line and a $1 / 2$ turn ( 180 degrees) other multiples of 90 degrees | - Identify, describe and represent the position of a shape following a reflection or translation using appropriate language | - Convert between different units of metric measure (for example, km to $\mathrm{m}, \mathrm{cm}$ to $\mathrm{m}, \mathrm{cm}$ to $\mathrm{mm}, \mathrm{g}$ to kg and ml to litres) <br> - Understand and use approximate equivalents between metric units and common imperial units such as inches, pounds and pints <br> - Solve problems involving converting between units of time | -Estimate volume (using 1cm cubes to build cuboids) and capacity (using measuring cylinders) <br> - Use all four operations to solve problems involving measure |

